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1 L2 Prediction Error Bounds for Nonparametric Function
Regression

1.1 Recap: prediction error bounds for ‖ · ‖n compared to ‖ · ‖L2.

We have been studying non-parametric function regression, where we observe xi, yi ∈ R
with yi = f∗(xi) + wi for i ∈ [n]. We assume f∗ ∈ F ⊆ {f : X → R} for some specific

function class F and take the noise to be wi
iid∼ N(0, σ2).

For the non-parametric least squares problem, we have the constrained form

f̂ = arg min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2.

Our goal is to bound the prediction error,

‖f̂ − f∗‖2L2(Pn)
=

1

n

n∑
i=1

(f̂(xi)− f∗(xi))2.

We proved a prediction error bound that relies on a critical equation.

Theorem 1.1. Let F∗ = F − {f∗} be star-shaped. Then Ew[‖f̂n − f∗‖∗n] . δ2n, where δn
solves the critical equation Gn(δ;F∗) = δ2.(2σ).

What if we want to look at the behavior of f̂ on a new dataset x̃ ∼ P instead of xi in the

original dataset? If we have yi = f∗(xi) + w̃i, where w̃i ∼ N(0, σ2) and (x̃i, ỹi)
iid∼ (xi, yi),

we can see that
Ex̃i,ỹi [(f̂(x̃i)− ỹi)]2 = σ2 + ‖f̂ − f∗‖2L2 .

So in many cases, we want to control the L2 distance between f̂ and f∗.
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1.2 Relation between ‖ · ‖2n and ‖ · ‖2L2

Let f ∈ F . Then if the function f does not depend on our training data set,

EX [‖f‖2n] = Ex

[
1

n

n∑
i=1

f(xi)
2

]
= E[f(x)2]

= ‖f‖L2 .

Now suppose that f̂(x) = h(x; {xi, yi}i∈[n]) depends on our training data set. Then

Exi [‖f̂ − f∗‖2n] = Ex

[
1

n

n∑
i=1

(f̂(xi; {xi, yi}i∈[n])− f∗(x̃))2

]
6= Ex[(f̂(x̃; {xi, yi}i∈[n])− f∗(x̃))2]

We hope to show a result like

‖f̂ − f∗‖2L2 . ‖f̂ − f∗‖2n︸ ︷︷ ︸
δ2n

+ε2n,

where ε2n → 0 as n→∞.
Today, we will show two bounds:

1. Naive bound: If we do not care about how fast εn → 0, we can get a bound by using
a global uniform bound, a global Rademacher complexity bound, and using bounded
difference concentration.

2. Tighter bound: We will use

(a) the local uniform bound

(b) local Rademacher complexity

(c) a tighter concentration inequality, known as the Talagrand concentration in-
equality.

1.3 Naive bound

Let f = f̂ − f∗ ∈ F∗. Then

∣∣∣‖f̂ − f∗‖2L2(Pn)
− ‖f̂ − f∗‖2L2(P)‖

∣∣∣ ≤ sup
g∈F∗

|‖g‖2n − ‖g‖2L2 |

= sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)
2 − E[g(x)2]

∣∣∣∣∣
2



=: Z

We first try to find a bound on the expectation of Z:

E[Z] = E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)
2 − E

[
1

n

n∑
i=1

g(x̃i)
2

]∣∣∣∣∣
]

≤ E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

(g(xi)
2 − g(x̃i)

2)

∣∣∣∣∣
]

Since the distribution of this is symmetric about 0,

= E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

ε2(g(xi)
2 − g(x̃i)

2)

∣∣∣∣∣
]

≤ 2E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

ε2g(xi)
2

∣∣∣∣∣
]

If this just had g instead of g2, this quantity would be the Rademacher complexity. So we
want to bound this by the Rademacher complexity. Write φ(t) = t2, so

≤ 2E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

ε2φ(g(xi))

∣∣∣∣∣
]

The function φ is 2‖F∗‖∞-Lipschitz, where we can assume that ‖F∗‖∞ = 1.

≤ 4 E

[
sup
g∈F

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣
]

︸ ︷︷ ︸
Rn(F∗) Rademacher complexity

.

We can use chaining to bound this.
Now let’s bound the distance from the mean. Using the bounded difference inequality,

|Z − E[Z]| ∼ sG(‖g‖2∞/n), so

‖f̂ − f∗‖2L2 . ‖f̂ − f∗‖2n︸ ︷︷ ︸
δ2n

+Rn(F∗) +O(1/
√
n).

If F∗ is parametric with d parameters, then δ2n � d
n and Rn(F∗) �

√
d
n .

1.4 Using localization to get a faster rate

We will present some heuristics, rather than something completely rigorous. The rigoorous
treatment is in Chapter 14 of Wainwright’s textbook. Suppose we already know that
‖f̂ − f∗‖L2(P) ≤ r. We can think about r decaying to 0 as n → ∞. It may seem strange
to assume that the L2 norm is bounded when this is what we want to prove, but the idea

3



is that we will get a more refined bound. So we can iterate this bound to get a nice final
result

Letting g = f̂ − f∗ ∈ F∗,

∣∣∣‖f̂ − f∗‖2L2(Pn)
− ‖f̂ − f∗‖2L2(P)‖

∣∣∣ ≤ sup
g∈F∗

‖g‖L2≤r

∣∣∣∣∣ 1n
n∑
i=1

g(xi)
2 − E[g(xi)

2]

∣∣∣∣∣
=: Z(r).

Now we bound the expectation using the same line of argument as before:

E[Z(r)] ≤ 4 E

 sup
g∈F
‖g‖L2≤r

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣


︸ ︷︷ ︸
Rn(r;F∗) localized Rademacher complexity

.

We now show that Rn(r;F∗) . εn · r, where εn = inf{ε : Rn(ε;F∗) ≤ ε2

16b} and

b = supg∈F∗ ‖g‖∞ = 1. This is because for any r ≥ εn, Rn(r;F∗)
r is non-increasing (as long

as F∗ is star-shaped). This tells us that

Rn(r;F∗)
r

≤ Rn(εn;F∗)
εn

=
εn
16
.

This means that Rn(r;F∗) . εnr.
Now let’s see how this implies an upper bound for the prediction error of the L2 norm.

Suppose that Z(r) ≈ E[Z(r)] for any r ∈ R (this should be made quantitative with the
Talagrand concentration inequality or a tighter concentration inequality). Then∣∣∣∣∣∣∣‖f̂ − f∗‖2L2(Pn)︸ ︷︷ ︸

a2

−‖f̂ − f∗‖2L2(P)︸ ︷︷ ︸
b2

∣∣∣∣∣∣∣ . Rn(r;F∗)

. εnr

= εn ‖f̂ − f∗‖L2︸ ︷︷ ︸
b

This is heuristic because the quantity ‖f̂ − f∗‖L2 is random and depends on the training
data set. However, we can use the iterative argument to make sense of this argument. We
now have

|a2 − b2| ≤ εnb ≤
b2

4
+ 4ε2n,
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which gives b2 . a2 + ε2n. So we get that

‖f̂ − f∗‖2L2 . ‖f̂ − f∗‖2n︸ ︷︷ ︸
δ2n

+ε2n.

This tells us that the upper bound of the prediction error in terms of the L2 norm is of the
same order as the upper bound of the prediction error in terms of the L2(Pn) norm. If T
is parametric with d parameters, then δ2n � ε2n � d

n .
Here, our proof is different in two ways from the treatment in the textbook.

1. The first way is that we have assumed that our concentration inequality does not
destroy our bound. If we just use the bounded differences inequality, we get the
naive bound

|Z(r)− E[Z(r)]| .
√

1

n
= ηn.

The issue with this is that Z(r) is O(1/n) and E[Z(r)] is O(1/n). Instead, we need
to use the Talagrand inequality.

2. The second difference is that we have assumed beforehand that ‖f̂ − f∗‖L2(P) ≤ r.
The textbook instead uses a peeling argument. We actually want to find a bound on
supr |Z(r) − E[Z(r)]|. To use a union bound, we need to discretize r, and a clever
way to do so is to use a log scale, rather than a uniform grid.

In the end, we get the following theorem, which we state informally. This is Corollary
14.15 in the textbook.

Theorem 1.2. Let

f̂ = arg min
f∈F

1

2n

n∑
i=1

(yi − f∗(xi)))2.

Then
‖f̂ − f∗‖L2 . ε2n + δ2n,

where

εn = inf

{
r : Rn(r;F) .

r2

b

}
, δn = inf

{
δ : Gn(δ;F∗) . δ

b

}
.

Here, εn is deterministic, as Rn is averaged over (xi)i∈[n]. On the other hand, δn is
random, as Gn depends on (xi)i∈[n].
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1.5 Uniform law for Lipschitz cost function

More generally, we may want to consider cost functions which are not the squared error.

Suppose we have (xi, yi)i∈[n]
iid∼ P ∈ P(X ×Y) with a function class F ⊆ {f : X → Ŷ}. Let

the loss be L : Ŷ × Y → R. Then we have the empirical risk

PnL(f(x), y) =
1

n

n∑
i=1

L(f(xi), yi),

with empirical risk minimizer

f̂ = arg min
f∈F

PnL(f(x), y)

and population risk minimizer

f∗ = arg min
f

PL(f(x), y)︸ ︷︷ ︸
Ex,y [L(f(x),y)]

.

Our goal is to bound ‖f̂ − f∗‖2L2 .
We assume the loss is L-Lipschitz:

|L(z, y)− L(z′, y)| ≤ L|z − z′|.

Another assumption, which is harder to check, is that L is r-strongly convex: If we let
Lf (x, y) := L(f(x), y), then we require

P

(
Lf − Lf∗ −

∂L
∂z

∣∣∣∣
f∗

(f − f∗)

)
≥ r

2
‖f − f∗‖2L2 .

Example 1.1 (Logistic regression). Let Y = {±1}, L(ŷ, y) = log(1 + e−2yŷ), and

P(y | x) =
1

1 + e−2yf∗(x)
.

Then L(ŷ, y) is 1-Lipschitz in ŷ. Under mild conditions, PLf is r-strongly convex.

Here is Theorem 14.20 in the textbook.

Theorem 1.3. Assume that F is 1-uniformly bounded and star-shaped, with population
minimizer f∗. Let δn = inf{δ > c√

n
: Rn(δ;F∗) ≤ δ2}.

(a) If L is L-Lipschitz in Ŷ, then with high probability,

sup
f∈F

|Pn(Lf − Lf∗)− P(Lf − Lf∗)|
‖f − f∗‖L2 + δn

≤ 10L · δn.
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(b) If PLf is also r-strongly convex, then with high probability, for all f̂ such that Pn(L
f̂
−

Lf∗) ≤ 0, we have

‖f̂ − f∗‖22 ≤
(

20L

r
+ 1

)2

δ2n

and

P(L
f̂
− Lf∗) ≤ 10L

(
20L

r
+ 1

)2

δ2n.

Remark 1.1. Statement (b) is a direct consequence of statement (a), using the r-strong
convexity condition. The proof of (a) also relies on a local Rademacher complexity bound.
We can bound supf∈F |Pn(Lf −Lf∗)−P(Lf −Lf∗)| using the Rademacher complexity, and
we can get a faster rate using local Rademacher complexity.

This concludes our discussion of nonparametric function estimation. Next time, we will
move on to minimax lower bounds.
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